223 research outputs found

    Hybrid-DFT+Vw_w method for accurate band structure of correlated transition metal compounds: the case of cerium dioxide

    Full text link
    Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a know drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT+Vw_w method [V. Iv{\'a}dy, et al., Phys. Rev. B 90, 035146 (2014)]. Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT+Vw_w functional can be determined from approximate quasi-particle spectra. The proposed technique leads to a reduction of self-interaction and provides improved description for both ss / pp and dd / ff-electrons of the simulated system. The performance of our charge self-consistent method is illustrated on the electronic structure calculation of cerium dioxide where good agreement with both quasi-particle and experimental spectra is achieved

    The origin of the core-level binding energy shifts in nanoclusters

    Full text link
    We investigate the shifts of the core-level binding energies in small gold nanoclusters by using {\it ab initio} density functional theory calculations. The shift of the 4ff states is calculated for magic number nanoclusters in a wide range of sizes and morphologies. We find a non-monotonous behavior of the core-level shift in nanoclusters depending on the size. We demonstrate that there are three main contributions to the Au 4ff shifts, which depend sensitively on the interatomic distances, coordination and quantum confinement. They are identified and explained by the change of the on-site electrostatic potential.Comment: 7 pages, 9 figure

    Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

    Full text link
    We revisit the color-diffusion algorithm [P. C. Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012)] in nonequilibrium ab initio molecular dynamics (NE-AIMD), and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored-atom) is accelerated toward the neighboring defect-site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate k_{NE} increases exponentially with the force intensity F, up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed k_{NE}(F) dependence on F. Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures, and reaches a factor of four orders of magnitude at the lowest temperature considered in the present study

    Temperature dependent effective potential method for accurate free energy calculations of solids

    Full text link
    We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on \emph{ab initio} molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in details. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within \emph{ab initio} and classical molecular dynamics frameworks. In particular, we examine from first-principles the behavior of force constants upon the dynamical stabilization of body centered phase of Zr, and show that they become more localized. We also calculate phase diagram for 4^4He modeled with the Aziz \emph{et al.} potential and obtain results which are in favorable agreement both with respect to experiment and established techniques

    Finite temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    Full text link
    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using recently introduced method: symmetry imposed force constant temperature dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T= 300 K agree well with the experimental values of polycrystalline elastic constants as well as Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ~14% from T=300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.Comment: 1 table, 3 figure

    Ab-initio elastic tensor of cubic Ti0.5_{0.5}Al0.5_{0.5}N alloy: the dependence of the elastic constants on the size and shape of the supercell model

    Full text link
    In this study we discuss the performance of approximate SQS supercell models in describing the cubic elastic properties of B1 (rocksalt) Ti0.5_{0.5}Al0.5_{0.5}N alloy by using a symmetry based projection technique. We show on the example of Ti0.5_{0.5}Al0.5_{0.5}N alloy, that this projection technique can be used to align the differently shaped and sized SQS structures for a comparison in modeling elasticity. Moreover, we focus to accurately determine the cubic elastic constants and Zener's type elastic anisotropy of Ti0.5_{0.5}Al0.5_{0.5}N. Our best supercell model, that captures accurately both the randomness and cubic elastic symmetry, results in C11=447C_{11}=447 GPa, C12=158C_{12}=158 GPa and C44=203C_{44}=203 GPa with 3% of error and A=1.40A=1.40 for Zener's elastic anisotropy with 6% of error. In addition, we establish the general importance of selecting proper approximate SQS supercells with symmetry arguments to reliably model elasticity of alloys. In general, we suggest the calculation of nine elastic tensor elements - C11C_{11}, C22C_{22}, C33C_{33}, C12C_{12}, C13C_{13}, C23C_{23}, C44C_{44}, C55C_{55} and C66C_{66}, to evaluate and analyze the performance of SQS supercells in predicting elasticity of cubic alloys via projecting out the closest cubic approximate of the elastic tensor. The here described methodology is general enough to be applied in discussing elasticity of substitutional alloys with any symmetry and at arbitrary composition.Comment: Submitted to Physical Review

    Elinvar effect in β−\beta-Ti simulated by on-the-fly trained moment tensor potential

    Full text link
    A combination of quantum mechanics calculations with machine learning (ML) techniques can lead to a paradigm shift in our ability to predict materials properties from first principles. Here we show that on-the-fly training of an interatomic potential described through moment tensors provides the same accuracy as state-of-the-art {\it ab inito} molecular dynamics in predicting high-temperature elastic properties of materials with two orders of magnitude less computational effort. Using the technique, we investigate high-temperature bcc phase of titanium and predict very weak, Elinvar, temperature dependence of its elastic moduli, similar to the behavior of the so-called GUM Ti-based alloys [T. Sato {\ it et al.}, Science {\bf 300}, 464 (2003)]. Given the fact that GUM alloys have complex chemical compositions and operate at room temperature, Elinvar properties of elemental bcc-Ti observed in the wide temperature interval 1100--1700 K is unique.Comment: 15 pages, 4 figure

    Significant elastic anisotropy in Ti1−x_{1-x}Alx_xN alloys

    Get PDF
    Strong compositional-dependent elastic properties have been observed theoretically and experimentally in Ti1−x_{1-x}Alx_x N alloys. The elastic constant, C11_{11}, changes by more than 50% depending on the Al-content. Increasing the Al-content weakens the average bond strength in the local octahedral arrangements resulting in a more compliant material. On the other hand, it enhances the directional (covalent) nature of the nearest neighbor bonds that results in greater elastic anisotropy and higher sound velocities. The strong dependence of the elastic properties on the Al-content offers new insight into the detailed understanding of the spinodal decomposition and age hardening in Ti1−x_{1-x}Alx_xN alloys.Comment: 3 figures, 3 page
    • …
    corecore